Edge-guarding Orthogonal Polyhedra
نویسندگان
چکیده
We address the question: How many edge guards are needed to guard an orthogonal polyhedron of e edges, r of which are reflex? It was previously established [3] that e/12 are sometimes necessary and e/6 always suffice. In contrast to the closed edge guards used for these bounds, we introduce a new model, open edge guards (excluding the endpoints of the edge), which we argue are in some sense more natural in this context. After quantifying the relationship between closed and open edge guards, we improve the upper bound to show that, asymptotically, (11/72)e (open or closed) edge guards suffice, or, in terms of r, that (7/12)r suffice. Along the way, we establish tight bounds relating e and r for orthogonal polyhedra of any genus.
منابع مشابه
Optimally Guarding 2-Reflex Orthogonal Polyhedra by Reflex Edge Guards
We study the problem of guarding an orthogonal polyhedron having reflex edges in just two directions (as opposed to three) by placing guards on reflex edges only. We show that ⌊ r − g 2 ⌋
متن کاملGuarding and Searching Polyhedra
Guarding and searching problems have been of fundamental interest since the early years of Computational Geometry. Both are well-developed areas of research and have been thoroughly studied in planar polygonal settings. In this thesis we tackle the Art Gallery Problem and the Searchlight Scheduling Problem in 3-dimensional polyhedral environments, putting special emphasis on edge guards and ort...
متن کاملWhen can a graph form an orthogonal polyhedron?
Polyhedra are an important basic structure in computational geometry. One of the most beautiful results concerning polyhedra is Cauchy’s theorem, which states that a convex polyhedron is uniquely defined by its graph, edge lengths and facial angles. (See Section 2 for definitions.) The proof of Cauchy’s theorem (see e.g. [2]) unfortunately is nonconstructive, and the only known algorithm to rec...
متن کاملGuarding the Vertices of an Orthogonal Terrain using Vertex Guards
A terrain T is an x-monotone polygonal chain in the plane; T is orthogonal if each edge of T is either horizontal or vertical. In this paper, we give an exact algorithm for the problem of guarding the convex vertices of an orthogonal terrain with the minimum number of reflex vertices.
متن کاملFace-Guarding Polyhedra
We study the Art Gallery Problem for face guards in polyhedral environments. The problem can be informally stated as: how many (not necessarily convex) windows should we place on the external walls of a dark building, in order to completely illuminate it? We consider both closed and open face guards (i.e., faces with or without their boundary), and we give some upper and lower bounds on the min...
متن کامل